

325

 24 A Logic-Based Reasoning System

Chapter

Objectives
Predicate calculus representation extended:
 Continued use of meta-linguistic abstraction
 Java interpreter for predicate calculus expressions
Search supported by unification
Proof trees implemented
 Capture logic inferences
 Represent structure of logic-based implications
 Reflect search path for producing proofs
Tester class developed
 Tests code so far built
Extensions proposed for user transparency
Java idioms utilized
Implement separation of representation and search
 Use of static structures

Chapter
Contents

24.1 Introduction
24.2 Logical Reasoning as Searching an And/Or Graph
24.3 The Design of a Logic-Based Reasoning System
24.4 Implementing Complex Logic Expressions
24.5 Logic-Based Reasoning as And/Or Graph Search
24.6 Testing the Reasoning System
24.7 Design Discussion

 24.1 Introduction

 Chapter 23 introduced meta-linguistic abstraction as an approach to solving
the complex problems typically found in Artificial Intelligence. That
chapter also began a three-chapter (23, 24, and 25) exploration this idea
through the development of a reasoning engine for predicate calculus.
Chapter 23 outlined a scheme for representing predicate calculus
expressions as Java objects, and developed the unification algorithm for
finding a set of variable substitutions, if they exist, that make two
expressions in the predicate calculus equivalent. This chapter extends that
work to include more complex predicate expressions involving the logical
operators and, ∧, or, ∨, not, ¬, and implication, ←, and develops a
reasoning engine that solves logic queries through the backtracking search
of a state space defined by the possible inferences on a set of logic
expressions.

24.2 Reasoning in Logic as Searching an And/Or Graph

 A logic-based reasoner searches a space defined by sequences of valid
inferences on a set of predicate logic sentences. For example:

326 Part IV: Programming in Java

likes(kate, wine).

likes(george, kate).

likes(david, kate).

friends(X, Y) ← likes(X, Z) ∧ likes(Y, Z).

We can see intuitively that, because both likes(george, kate)
and likes(david, kate) are true, it follows from the “friends
rule” that friends(george, david) is true. A more detailed
explanation of this reasoning demonstrates the search process that
constructs these conclusions formally. We begin by unifying the goal
query, friends(george, david), with the conclusion, or head of
the friends predicate under the substitutions {george/X,
david/Y}, as seen in Figure 24.1.

Figure 24.1. The set of variable substitutions, found under unification, by
which the two friends predicates are identical.

Figure 24.2 illustrates the result of propagating these substitutions through
the body of the rule. As the figure suggests, under the inference rule of
modus ponens, friends(george, david) is true if there exists some
binding for Z such that likes(george, Z) and likes(david,
Z) are true. When viewed in terms of search, this leads to the sub-goal of
proving the rule premise, or that the “tail,” of the rule is true. Figure 24.2
illustrates this structure of reasoning as a graph. The arc joining the
branches between the two likes predicates indicates that they are joined
by a logical and. For the conclusion friends(george, david) to
be true, we must find a substitution for Z under which both
likes(george, Z) and likes(david, Z) are true. Figure 24.2
is an example of a representation called an and/or graph (Luger 2009,
Section 3.3). And/or graphs represent systems of logic relationships as a
graph that can be searched to find valid logical inferences. And nodes
require that all child branches be satisfied (found to be true) in order for
the entire node to be satisfied. Or nodes only require that one of the child
branches be satisfied.

 Chapter 24 A Logic-Based Reasoning System 327

Figure 24.2. Substitution sets supporting the graph search of the
friends predicate.

As we continue building this graph, the next step is to match the sentence
likes(george, Z) with the different likes predicates. The first
attempt, matching likes(george, Z) with likes(kate,
wine) fails to unify. Trying the second predicate, likes(george,
kate) results in a successful match with the substitution {kate/Z}, as
in Figure 24.3.

Figure 24.3 Substitution sets supporting the search to satisfy the
friends predicate.

Note that the branches connecting the goal likes(george, Z) to
the different attempted matches in the graph are not connected. This
indicates an or node, which can be satisfied by matching any one of the
branches.

328 Part IV: Programming in Java

The final step is to apply the substitution {kate/Z} to the goal sentence
likes(david, Z), and to try to match this with the logic
expressions. Figure 24.4 indicates this step, which completes the search
and proves the initial friends goal to be true. Note again how the
algorithm tries the alternative branches of the or nodes of the graph to find
a solution.

Figure 24.4. A search-based solution of the friends relationship.

This process of trying alternative branches of a state space can be
implemented as a backtracking search. If a goal in the search space fails,
such as trying to match likes(george, Z) and likes(kate,
wine), the algorithm backtracks and tries the next possible branch of the
search space. The basic backtracking algorithm is given in (Luger 2009,
Section 3.2) as:

If some state S does not offer a solution to a search problem, then open and
investigate its first child S1 and apply the backtrack procedure recursively to this
node. If no solution emerges from the subtree rooted by S1 then fail S1 and apply
backtrack recursively to the second child S2. Continuing on, if no solution
emerges from any of the children of S, then fail back to S’s parent and apply
backtrack to S’s first sibling.

Before implementing our logic-based reasoner as a backtracking search of
and/or graphs, there is one more concept we need to introduce. That is
the notion of a proof tree. If we take only the successful branches of our
search, the result is a tree that illustrates the steps supporting the
conclusion, as can be seen in Figure 24.5. In implementing a logic-based
reasoning system, we not only search an and/or graph, but also construct
the proof tree illustrating a successful search.

 Chapter 24 A Logic-Based Reasoning System 329

Figure 24.5. A proof tree showing the successful satisfaction of the
friends predicate.

24.3 The Design of a Logic-Based Reasoning System

 The first step in designing a logic-based reasoning system is to create a
representation for the logical operators and, ∧, or, ∨, not, ¬, and
implication, ←. Figure 24.6 begins this process by adding several classes
and interfaces to those described in Figure 23.2.

Figure 24.6. Classes and interfaces for a logic-based inference system.

330 Part IV: Programming in Java

The basis of this extension is the interface, Goal. Expressions that will
appear as goals in an and/or graph must implement this interface. These
include SimpleSentence, and the basic logical operators. We will add
methods to this interface shortly, but first it is worth looking at a number
of interesting design decisions supported by this object model.

The first of these design decisions is to divide PCExpressions into
two basic groups: Unifiable, which defines the basic unification
algorithm, and Goal which defines nodes of our search space. It is worth
noting that, when we were developing this algorithm, our initial approach
did not make this distinction, but included both basic unification and the
search of logical operators in the unify method, which was specified in
the top-level interface, PCExpression.

We chose to re-factor the code and divide this functionality among the
two interfaces because 1) the initial approach complicated the unify
method considerably, and 2) since the objects Constant and
Variable did not appear in proof trees, we had to treat these as
exceptions, complicating both search and construction of proof trees.
Note also that SimpleSentence implements both interfaces. This is
an example of how Java uses interfaces to achieve a form of multiple
inheritance.

Another important aspect of this design is the introduction of the
AbstractOperator class. As indicated in the model of Figure 24.6,
an AbstractOperator is the parent class of all logical operators. This
abstract class defines the basic handling of the arguments of operators
through the methods firstOperand, tailOperands, and
isEmpty. These methods will enable a recursive search to find solutions
to the different operands.

To complete our logical representation language, we need to define Horn
Clause rules. Rules do not correspond directly to nodes in an and/or
graph; rather, they define relationships between nodes. Consequently, the
Rule class will be a direct descendant of PCExpression, as
shown in Figure 24.7, where a rule is a Horn Clause, taking a
SimpleSentence as its conclusion, or head, and a Goal as its premise,
or tail.

This completes the classes defining our logic-based language. The next
section gives their implementation, which is fairly straightforward, and
Section 24.5 adds new classes for searching the and/or graph defined by
inferences on these expressions. This decision to define separate classes
for the representation and search reflects common AI programming
practice.

24.4 Implementing Complex Logic Expressions

 Implementing complex expressions starts with the Goal interface.
Although Section 24.5 adds a method to this definition, for now, it is a
methodless interface:

public interface Goal extends PCExpression {}

 Chapter 24 A Logic-Based Reasoning System 331

Figure 24.7. A Horn clause Rule representation as an instance of

PCExpression.

Later, we modify SimpleSentence to implement this interface, but
first, we define a new class, called AbstractOperator, that defines
the basic methods for accessing the arguments of n-ary operators. In
keeping with common Java practice, we implement several patterns for
accessing operators, including retrieval of operands by number using the
methods operandCount() and getOperand(int i). Since we
also want to support recursive algorithms for manipulating operands, we
implement a head/tail approach similar to the car/cdr pattern widely
used in Lisp. We do this through the methods firstOperand(),
getOperatorTail(), and isEmpty(). We also define the
replaceVariables() method required of all PCExpressions,
taking advantage of the class’ general representation of operands.

Implementation of these methods is straightforward, and we do not
discuss it other than to present the code:

public abstract class AbstractOperator

 implements Goal, Cloneable

{

 protected ArrayList<Goal> operands;

 public AbstractOperator(Goal... operands)

 {

 Goal[] operandArray = operands;

 this.operands = new ArrayList<Goal>();

 for(int i = 0; i < operandArray.length;i++)

 {

 this.operands.add(operandArray[i]);

 }

 }

332 Part IV: Programming in Java

 public AbstractOperator(ArrayList<Goal>

 operands)

 {

 this.operands = operands;

 }

 public void setOperands(ArrayList<Goal>

 operands)

 {

 this.operands = operands;

 }

 public int operandCount()

 {

 return operands.size();

 }

 public Goal getOperand(int i)

 {

 return operands.get(i);

 }

 public Goal getFirstOperand()

 {

 return operands.get(0);

 }

 public AbstractOperator getOperatorTail()

 throws CloneNotSupportedException

 {

 ArrayList<Goal> tail = new

 ArrayList<Goal>(operands);

 tail.remove(0);

 AbstractOperator tailOperator =
 (AbstractOperator)this.clone();

 tailOperator.setOperands(tail);

 return tailOperator;

 }

 public boolean isEmpty()

 {

 return operands.isEmpty();

 }

 public PCExpression

 replaceVariables(SubstitutionSet s)

 throws CloneNotSupportedException

 Chapter 24 A Logic-Based Reasoning System 333

 {

 ArrayList<Goal> newOperands =

 new ArrayList<Goal>();

 for(int i = 0; i < operandCount(); i++)
 newOperands.add((Goal)

 getOperand(i).

 replaceVariables(s));

 AbstractOperator copy =

 (AbstractOperator) this.clone();

 copy.setOperands(newOperands);

 return copy;

 }

}

The And operator is a simple extension to this class. At this time, our
implementation includes just the toString() method. Note use of the
accessors defined in AbstractOperator():

public class And extends AbstractOperator

{

 public And(Goal... operands)

 {

 super(operands);

 }

 public And(ArrayList<Goal> operands)

 {

 super(operands);

 }

 public String toString()

 {

 String result = new String("(AND ");

 for(int i = 0; i < operandCount(); i++)

 result = result +
 getOperand(i).toString();

 return result;

 }

}

We leave implementation of Or and Not as exercises.

Finally, we implement Rule as a Horn Clause, having a
SimpleSentence as its conclusion, or head, and any Goal as its
premise, or tail. At this time, we provide another basic implementation,
consisting of accessor methods and the replaceVariables()
method required for all classes implementing PCExpression. Also, we
allow Rule to have a head only (i.e., body = null), as follows from the

334 Part IV: Programming in Java

definition of Horn Clauses. These rules correspond to simple assertions,
such as likes(george, kate).

public class Rule implements PCExpression

{

 private SimpleSentence head;

 private Goal body;

 public Rule(SimpleSentence head)

 {

 this(head, null);

 }

 public Rule(SimpleSentence head, Goal body)

 {

 this.head = head;

 this.body = body;

 }

 public SimpleSentence getHead()

 {

 return head;

 }

 public Goal getBody()

 {

 return body;

 }

 public PCExpression

 replaceVariables(SubstitutionSet s)

 throws CloneNotSupportedException

 {

 ArrayList<Goal> newOperands =

 new ArrayList<Goal>();

 for(int i = 0; i < operandCount(); i++)

 newOperands.add((Goal)getOperand(i).

 replaceVariables(s));

 AbstractOperator copy =

 (AbstractOperator)this.clone();

 copy.setOperands(newOperands);

 return copy;

 }

 public String toString()

 {

 if (body == null)

 return head.toString();

 Chapter 24 A Logic-Based Reasoning System 335

 return head + " :- " + body;

 }

}

Up to this point, the implementation of complex expressions has been
straightforward, focusing on operators for manipulating their component
structures. This is because their more complex semantics is a consequence
of how they are interpreted in problem solvers. The next section discusses
the design of the logic-based reasoning engine that supports this
interpretation.

24.5 Logic-Based Reasoning as And/Or Graph Search

 The basis of our implementation of and/or graph search is a set of classes
for defining nodes of the graph. These will correspond to simple
sentences, and the operators And, Or, and Not. In this section we define
nodes for And with simple sentences, leaving Or and Not as exercises.
Our approach is to construct an and/or graph as we search. When the
search terminates in success, this graph will be the proof tree for that
solution. If additional solutions are desired, a call to a
nextSolution() method causes the most recent subgoal to fail,
resuming the search at that point. If there are no further solutions from
that subgoal, the search will continue to “fail back” to a parent goal, and
continue searching. The implementation will repeat this backtracking
search until the space is exhausted.

Figure 24.8 illustrates this search. At the top of the figure we begin with an
initial and/or graph consisting only of the initial goal (e.g.,
friends(george, X)). A call to the method nextSolution()
starts a search of the graph and constructs the proof tree, stopping the
algorithm. In addition to constructing the proof tree, each node stores its
state at the time the search finished, so a second call to
nextSolution() causes the search to resume where it left off.

This technique is made possible by a programming pattern known as
continuations. Continuations have had multiple uses but the main idea is that
they allow the programmer to save the program execution at any instant
(state) in time so that it can be re-started from that point sometime in the
future. In languages that support continuations directly, this is usually
implemented by saving the program stack and program counter at the
point where the program is frozen. Java does not support this pattern
directly, so we will implement a simplified form of the continuation
pattern using object member variables to save a reference to the current
goal, the current rule used to solve it, and the current set of variable
bindings in the tree search. Figure 24.9 shows the classes we introduce to
implement this approach.

AbstractSolutionNode defines the basic functionality for every
node of the graph, including the abstract method nextSolution().
AbstractSolutionNode and its descendants will implement the
ability to search the and/or graph, to save the state of the search, and to
resume on subsequent calls to nextSolution().

336 Part IV: Programming in Java

The class RuleSet maintains the logic base, a list of rules. The intention
is that all nodes will use the same instance of RuleSet, with each
instance of AbstractSolutionNode maintaining a reference to a
particular rule in the set to enable the continuation pattern.

Figure 24.8. An example search space and construction of the proof tree.

Figure 24.9. The class structure for implementing continuations.

The descendants of AbstractSolutionNode maintain references to
their children. SimpleSentenceSolutionNode represents a simple
sentence as a goal, and maintains a reference to its child: the head of a
rule. AndSolutionNode represents an and node, and keeps a

 Chapter 24 A Logic-Based Reasoning System 337

reference to the first branch of the and node (the relationship labeled
headSolutionNode) and the subsequent branches in the and node
(the relationship labeled tailSolutionNode).

We begin implementation with the RuleSet class:
public class RuleSet

{

 private Rule[] rules;

 public RuleSet(Rule... rules)

 {

 this.rules = rules;

 }

 public Rule getRuleStandardizedApart(int i)

 {

 Rule rule =

 (Rule)rules[i].

 standardizeVariablesApart(

 new Hashtable<Variable,

 Variable>());

 return rule;

 }

 public Rule getRule(int i)

 {

 return rules[i];

 }

 public int getRuleCount()

 {

 return rules.length;

 }

}

This definition is simple: it maintains an array of rules and allows them to
be retrieved by number. The only unusual element is the method
getRuleStandardizedApart(int i). This is necessary because
the scope of logical variables is the single predicate sentence containing it
in a single reasoning step. If we use the same rule again in the search,
which is fairly common, we will need to assign new bindings to the
variables. A simple way to insure this is to replace the variables in the rule
with new copies having the same name. This operation, called
“standardizing variables apart” must be defined for all expressions in the
rule set. To support this, we will add a new method signature to the
interface PCExpression. This interface now becomes:

public interface PCExpression

{

 public PCExpression
 standardizeVariablesApart(

338 Part IV: Programming in Java

 Hashtable<Variable, Variable> newVars);

 public PCExpression
 replaceVariables(SubstitutionSet s);

}

The intention here is that the method will be recursive, with each type of
PCExpression giving it its own appropriate definition. In the method
signature, the hash table of pairs of variables keeps track of the
substitutions made so far, since a variable may occur multiple times in an
expression, and will need to use the same replacement. Defining this
requires changes to the following classes. AbstractOperator will define
it for all n-ary operators:

public abstract class AbstractOperator implements
Goal, Cloneable

{

 // variables and methods as already defined

 public PCExpression

 standardizeVariablesApart(
 Hashtable<Variable,
 Variable>wVars)

 throws CloneNotSupportedException

 {

 ArrayList<Goal> newOperands =

 new ArrayList<Goal>();

 for(int i = 0; i < operandCount(); i++)

 newOperands.add((Goal)getOperand(i).

 standardizeVariablesApart(newVars));

 AbstractOperator copy =

 (AbstractOperator) this.clone();

 copy.setOperands(newOperands);

 return copy;

 }

}

We will also define the method for existing classes SimpleSentence,
Constant, and Variable. The definition for Constant is straightforward:
each constant returns itself.

 public class Constant implements Unifiable

{

 // variables and methods as previously defined

 public PCExpression

 standardizeVariablesApart(

 Hashtable<Variable, Variable> newVars)

 {

 return this;

 }

}

 Chapter 24 A Logic-Based Reasoning System 339

The definition for Variable is also straightforward, and makes use of
the copy constructor defined earlier.

 public class Variable implements Unifiable

{

 // variables and methods already defined.

 public PCExpression standardizeVariablesApart(

 Hashtable<Variable, Variable>

 newVars)

 {

 Variable newVar = newVars.get(this);

 // Check if the expression already has

 // a substitute variable.

 if(newVar == null) // if not create one.

 {

 newVar = new Variable(this);

 newVars.put(this, newVar);

 }

 return newVar;

 }

SimpleSentence defines the method recursively:

public class SimpleSentence

 implements Unifiable, Goal, Cloneable

{

 // variables and methods already defined.

 public PCExpression

 standardizeVariablesApart(

 Hashtable<Variable, Variable>

 newVars)

 throws CloneNotSupportedException

 {

 Unifiable[] newTerms =

 new Unifiable[terms.length];

 //create an array for new terms.

 for(int i = 0; i < length(); i++){

 newTerms[i] =

 (Unifiable)terms[i].

 standardizeVariablesApart(

 newVars);

 // Standardize apart each term.

 // Only variables will be affected.

 }

340 Part IV: Programming in Java

 SimpleSentence newSentence =
 (SimpleSentence) clone();

 newSentence.setTerms(newTerms);

 return newSentence;

 }

Once RuleSet has been defined, the implementation of
AbstractSolutionNode is, again, fairly straightforward.

public abstract class AbstractSolutionNode

{
 private RuleSet rules;
 private Rule currentRule = null;
 private Goal goal= null;
 private SubstitutionSet parentSolution;
 private int ruleNumber = 0;
 public AbstractSolutionNode(Goal goal,
 RuleSet rules,
 SubstitutionSet parentSolution)
 {
 this.rules = rules;

 this.parentSolution = parentSolution;

 this.goal = goal;

 }

 public abstract SubstitutionSet nextSolution()

 throws CloneNotSupportedException;

 protected void reset(SubstitutionSet
 newParentSolution)

 {

 parentSolution = newParentSolution;

 ruleNumber = 0;

 }

 public Rule nextRule() throws

 CloneNotSupportedException

 {

 if(hasNextRule())

 currentRule =

 rules.getRuleStandardizedApart(
 ruleNumber++);

 else

 currentRule = null;

 return currentRule; }

 protected boolean hasNextRule()

 {

 return ruleNumber < rules.getRuleCount();

 }

 Chapter 24 A Logic-Based Reasoning System 341

 protected SubstitutionSet getParentSolution()

 {
 return parentSolution;
 }

 protected RuleSet getRuleSet()

 {
 return rules;
 }

 public Rule getCurrentRule()

 {

 return currentRule;

 }

 public Goal getGoal()

 {

 return goal;

 }

}

The member variable rules holds the rule set shared by all nodes in the
graph. RuleNumber indicates the rule currently being used to solve the
goal. ParentSolution is the substitution set as it was when the node
was created; saving it allows backtracking on resuming the continuation of
the search. These three member variables allow the node to resume search
where it left off, as required for the continuation pattern.

The variable goal stores the goal being solved at the node, and
currentRule is the rule that defined the current state of the node.
Reset() allows us to set a solution node to a state equivalent to a newly
created node. NextRule() returns the next rule in the set, with
variables standardized apart. The definition also includes the signature for
the nextSolution() method. The remaining methods are simple
accessors.

The next class we define is SimpleSentenceSolutionNode, an
extension of AbstractSolutionNode for simple sentences.

public class SimpleSentenceSolutionNode extends
 AbstractSolutionNode

{

 private SimpleSentence goal;

 private AbstractSolutionNode child = null;

 public SimpleSentenceSolutionNode(
 SimpleSentence goal,
 RuleSet rules,
 SubstitutionSet parentSolution)

 throws CloneNotSupportedException

 {

 super(goal, rules, parentSolution);

 }

342 Part IV: Programming in Java

 public SubstitutionSet nextSolution()

 {

 SubstitutionSet solution;

 if(child != null)

 {

 solution = child.nextSolution();

 if (solution != null)

 return solution;

 }

 child = null;

 Rule rule;

 while(hasNextRule() == true)

 {

 rule = nextRule();

 SimpleSentence head = rule.getHead();

 solution = goal.unify(head,
 getParentSolution());

 if(solution != null)

 {

 Goal tail = rule.getBody();

 if(tail == null)

 return solution;

 child = tail.getSolver
 (getRuleSet(),solution);

 SubstitutionSet childSolution =
 child.nextSolution();

 if(childSolution != null)

 return childSolution;

 }

 }

 return null;

 }

 public AbstractSolutionNode getChild()

 {

 return child;

 }

}

This class has one member variable: child is the next node, or subgoal
in the state space. The method nextSolution() defines the use of

 Chapter 24 A Logic-Based Reasoning System 343

these variables, and is one of the more complex methods in the
implementation, and we will list the steps in detail.

1. The first step in nextSolution() is to test if child is
null. If it is not, which could be the case if we are resuming
a previous search, we call nextSolution() on the child
node to see if there are any more solutions in that branch of
the space. If this returns a non-null result, the method returns
this solution.

2. If the child node returns no solution, the method sets child
to null, and resumes trying rules in a while-loop. The loop
gets each rule from the RuleSet in turn, and attempts to
unify the goal with the rule head.

3. If the goal matches a rule head, the method then checks if the
rule has a tail, or premise. If there is no tail, then this match
represents a solution to the goal and returns that substitution
set.

4. If the rule does have a tail, the method calls getSolver()
on the rule tail to get a new child node. This is a new method,
which we will discuss shortly.

5. Finally, the method calls nextSolution() on the new
child node, returning this solution if there is one, and
continuing the search otherwise.

6. If the while-loop exhausts the rule set, the node returns null,
indicating there are no further solutions.

We have not discussed the method getSolver()mentioned in step
#4. This is a new method for all classes implementing the Goal interface
that returns the type of solution node appropriate to that goal. By letting
each goal determine the proper type of solver for it, we can implement
nextSolution() in general terms. The revised definition of Goal:

public interface Goal extends PCExpression

 throws CloneNotSupportedException

{

 public AbstractSolutionNode getSolver(
 RuleSet rules,
 SubstitutionSet parentSolution);

}

To complete the search implementation, we define the class,
AndSolutionNode. Our approach to this implementation is to define
a new And node for each argument to the And operator and the
remaining operators. Figure 24.10 illustrates this approach. At the top of
the figure is a portion of an And/Or graph for the goal p ∧ q ∧ r ∧ s,
indicating that the top-level goal will be satisfied by a set of variable
substitutions that understands all four of its child goals.

344 Part IV: Programming in Java

Figure 24.10 A conjunctive goal (top) and the search tree used for its

solution.

The bottom of Figure 24.10 indicates the approach we will take. Instead of
allowing multiple children at an and node, we will make each node binary,
consisting of the and of the solution for the first operand (the head) and
the subsequent operands (the tail). This supports a recursive algorithm
that simplifies our code. We leave it to the student to demonstrate
(preferably through a formal proof) that the two approaches are
equivalent. An additional exercise to implement and nodes by using an
iterator across a list of child nodes.

AndSolutionNode follows the structure of Figure 24.10:
public class AndSolutionNode extends

 AbstractSolutionNode

{

 private AbstractSolutionNode

 headSolutionNode = null;

 Chapter 24 A Logic-Based Reasoning System 345

 private AbstractSolutionNode
 tailSolutionNode = null;

 private AbstractOperator operatorTail = null;

 public AndSolutionNode(And goal,
 RuleSet rules,
 SubstitutionSet parentSolution)
 throws CloneNotSupportedException
 {
 super(goal, rules, parentSolution);

 headSolutionNode =
 goal.getFirstOperand().

 getSolver(rules, parentSolution);

 operatorTail = goal.getOperatorTail();
 }

 protected AbstractSolutionNode

 getHeadSolutionNode()

 {

 return headSolutionNode;

 }

 protected AbstractSolutionNode

 getTailSolutionNode()

 {

 return tailSolutionNode;

 }

 public SubstitutionSet nextSolution()

 throws CloneNotSupportedException

 {

 SubstitutionSet solution;

 if(tailSolutionNode != null)

 {

 solution =
 tailSolutionNode.nextSolution();

 if(solution != null) return solution;

 }

 while(solution =
 headSolutionNode.nextSolution())
 != null)

 {

 if(operatorTail.isEmpty())

 return solution;

 else

 {

 tailSolutionNode =
 operatorTail.getSolver(
 getRuleSet(), solution);

346 Part IV: Programming in Java

 SubstitutionSet tailSolution =
 tailSolutionNode.
 nextSolution();

 if(tailSolution != null)

 return tailSolution;

 }

 }

 return null;

 }

 }

The constructor creates a solution node, headSolutionNode, for the
first argument of the And operator, and also sets the member variable,
operatorTail, for the rest of the arguments if they exist. Note that it
does not create a solution node for the tail at this time. This is an
efficiency concern: if there are no solutions to the head subgoal, the entire
and operator will fail, and there is no need to try the rest of the operators.

As with SimpleSolutionNode, the nextSolution() method
implements the search and the supporting continuation pattern. It begins
by testing if tailSolutionNode is non-null. This is true only if there are
remaining arguments (operatorTail != null), and we have found at
least one solution to the head goal. In this case, the continuation must first
check to see if there are additional solutions to the tail goal.

When this fails, the algorithm enters a loop of testing for further solutions
to the head goal. When it finds a new solution to the head, it checks if
there is a tail goal; if not, it returns the solution. If there is a tail goal, it will
acquire the child node, a subclass of AbstractSolutionNode using the
getSolver method, and then tries for a solution to the tail goal.

This completes the implementation of the search framework for the And
operator. We leave implementation of Or and Not to the reader.

24.6 Testing the Reasoning System

 Below is a simple Tester class for the reasoning system. It uses a
recursive rule for reasoning about ancestor relationships. This is a simple
test harness and is not suitable for end users. Finishing the reasoner would
involve allowing the representation of rules in a more friendly syntax, such
as Prolog, and an interactive query engine. We leave this as an exercise.
We also encourage the reader to modify this simple Tester to further
explore the code.

public class Tester

{

 public static void main(String[] args)

 { //Set up the knowledge base.

 Constant parent = new Constant("parent"),

 bill = new Constant("Bill"),
 audrey = new Constant("Audrey"),
 maria = new Constant("Maria"),

 Chapter 24 A Logic-Based Reasoning System 347

 tony = new Constant("Tony"),

 charles = new Constant("Charles"),

 ancestor = new Constant("ancestor");

 Variable X = new Variable("X"),

 Y = new Variable("Y"),

 Z = new Variable("Z");

 RuleSet rules = new RuleSet(

 new Rule(new SimpleSentence(parent,
 bill, audrey)),

 new Rule(new SimpleSentence(parent,
 maria, bill)),

 new Rule(new SimpleSentence(parent,
 tony, maria)),

 new Rule(new SimpleSentence(parent,
 charles, tony)),

 new Rule(new SimpleSentence(ancestor,
 X, Y),

 new And(new SimpleSentence(parent,
 X, Y))),

 new Rule(new SimpleSentence(ancestor,
 X, Y),

 new And(new SimpleSentence(parent,
 X, Z),

 new SimpleSentence(ancestor, Z, Y))));

 // define goal and root of search space.

 SimpleSentence goal =
 new SimpleSentence(ancestor,
 charles, Y);

 AbstractSolutionNode root =
 goal.getSolver(rules,
 new SubstitutionSet());

 SubstitutionSet solution;

 // print out results.

 System.out.println("Goal = " + goal);

 System.out.println("Solutions:");

 try

 {

 while((solution = root.nextSolution())

 != null)

 {

 System.out.println(" " + goal.
 replaceVariables(
 solution));

 }

 }

 catch (CloneNotSupportedException e)

348 Part IV: Programming in Java

 {
 System.out.println(
 "CloneNotSupportedException:" + e);

 }
 }
}

24.7 Design Discussion

 In closing out this chapter, we would like to look at two major design
decisions. The first is our separation of representation and search through
the introduction of AbstractSolutionNode and its descendants.
The second is the importance of static structure to the design.

Separating
Representation

and Search

The separation of representation and search is a common theme in AI
programming. In Chapter 22, for example, our implementation of simple
search engines relied upon this separation for generality. In the reasoning
engine, we bring the relationship between representation and search into
sharper focus. Here, the search engine serves to define the semantics of
our logical representation by implementing a form of logical inference. As
we mentioned before, our approach builds upon the mathematics of the
representation language – in this case, theories of logic inference – to
insure the quality of our representation.

One detail of our approach bears further discussion. That is the use of the
method, getSolver(RuleSet rules, SubstitutionSet
parentSolution), which was defined in the Goal interface. This
method simplifies the handling of the search space by letting search
algorithms treat them independently of their type (simple sentence, node,
etc). Instead, it lets us treat nodes in terms of the general methods defined
by AbstractSolutionNode, and to rely upon each goal to return
the proper type of solution node. This approach is beneficial, but as is
typical of object-oriented design, there are other ways to implement it.

One of these alternatives is through a factory pattern. This would replace
the getSolver() method of Goal with a separate class that creates
instances of the needed node. For example:

Class SolutionNodeFactory
{
 public static AbstractSolutionNode

 getSolver(Goal goal,
 RuleSet rules,
 SubstitutionSet parentSolution)

 {
 if (goal instanceof SimpleSentence)

 return new SimpleSentenceSolutionNode(
 goal, rules, parentSolution);

 if (goal instanceof And)

 return new AndSolutionNode(goal, rules,
 parentSolution);
 }
}

 Chapter 24 A Logic-Based Reasoning System 349

There are several interesting trade-offs between the approaches. Use of
the Factory sharpens the separation of representation and search. It
even allows us to reuse the representation in contexts that do not involve
reasoning without the difficulty of deciding how to handle the
getSolver method required by the parent interface. On the other
hand, the approach we did use allows us to get the desired solver without
using instanceof to test the type of goal objects explicitly. Because the
instanceof operator is computationally expensive, many programmers
consider it good style to avoid it. Also, when adding a new operator, such
as Or, we only have to change the operator’s class definition, rather than
adding the new class and modifying the Factory object. Both
approaches, however, are good Java style. As with all design decisions, we
encourage the reader to evaluate these and other approaches and make up
their own mind.

The
Importance of

Static Structure

A more important design decision concerns the static structure of the
implementation. By static structure, we mean the organization of classes in
a program. We call it static because this structure is not changed by
program execution. As shown in Figures 24.6, 24.7, and 24.9, our
approach has a fairly complex static structure. Indeed, in developing the
reasoner, we experimented with several different approaches (this is, we
feel, another good design practice), and many of these had considerably
fewer classes and simpler static structures. We chose this approach
because it is usually better to represent as much of the program’s semantic
structure as is feasible in the class structure of the code. There are several
reasons for this:

1. It makes the code easier to understand. Although our static
structure is complex, it is still much simpler than the dynamic
behavior of even a moderately complex program. Because it is
static, we can make good use of modeling techniques and tools
to understand the program, rather than relying on dynamic
tracing to see what is going on in program executions.

2. It simplifies methods. A well-designed static structure,
although it may be complex, does not necessarily add
complexity to the code. Rather, it moves complexity from
methods to the class structure. Instead of a few classes with
large complex methods, we tend to have more, simpler
methods. If we look at the implementation of our logic-based
reasoner, the majority of the methods were surprisingly simple:
mostly setting or retrieving values from a data structure. This
makes methods easier to write correctly, and easier to debug.

3. It makes it easier to modify the code. As any experienced
programmer has learned, the lifecycle of useful code inevitably
involves enhancements. There is a tendency for these
enhancements to complicate the code, leading to increased
problems with bugs as the software ages. This phenomenon
has been called software entropy. Because it breaks the
program functionality down into many smaller methods
spread among many classes, good static structure can simplify

350 Part IV: Programming in Java

code maintenance by reducing the need to make complex
changes to existing methods.

This chapter completes the basic implementation of a logic-based
reasoner, except for certain extensions including adding the operators for
or and not. We leave these as an exercise. The next chapter will add a
number of enhancements to the basic reasoner, such as asking users for
input during the reasoning process, or replacing true/false values with
quantitative measures of uncertainty. As we develop these enhancements,
keep in mind how class structure supports these extensions, as well as the
implementation patterns we use to construct them.

 Exercises

 1. Write a method of AbstractSolutionNode to print out a proof
tree in a readable format. A common approach to this is to indent each
node’s description c * level, where level is its depth in the tree, and c is the
number of spaces each level is indented.

2. Add classes for the logical operators Or and Not. Try following the
pattern of the chapter’s implementation of And, but do so critically. If you
find an alternative approach you prefer, feel free to explore it, rewriting
Or and Not as well. If you do decide on a different approach, explain
why.

3. Extend the “user-friendly” input language from exercise 8 of chapter 22
to include And, ∧, Or, ∨, Not,¬, and Rule, ←.

4. Write a Prolog-style interactive front end to the logical reasoner that will
read in a logical knowledge-base from a file using the language of exercise
2, and then enter a loop where users enter goals in the same language,
printing out the results, and then prompting for another goal.

5. Implement a factory pattern for generating solutionNodes, and
compare it to the approach taken in the chapter. A factory would be a
class, named solutionNodeFactory with a methods that would take
any needed variables and return an instance of the class
solutionNodes.

6. Give a logical proof that the two approaches to representing And nodes
in Figure 24.10 are equivalent.

7. Modify the nextSolution() method in AndSolutionNode to
replace the recursive implementation with one that iterates across all the
operators of an And operator. Discuss the trade-offs between efficiency,
understandability, and maintainability in the two approaches.

