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 24.1 Introduction 

 Chapter 23 introduced meta-linguistic abstraction as an approach to solving 
the complex problems typically found in Artificial Intelligence. That 
chapter also began a three-chapter (23, 24, and 25) exploration this idea 
through the development of a reasoning engine for predicate calculus. 
Chapter 23 outlined a scheme for representing predicate calculus 
expressions as Java objects, and developed the unification algorithm for 
finding a set of variable substitutions, if they exist, that make two 
expressions in the predicate calculus equivalent. This chapter extends that 
work to include more complex predicate expressions involving the logical 
operators and,  ∧, or, ∨, not, ¬, and implication, ←, and develops a 
reasoning engine that solves logic queries through the backtracking search 
of a state space defined by the possible inferences on a set of logic 
expressions. 

24.2 Reasoning in Logic as Searching an And/Or Graph 

 A logic-based reasoner searches a space defined by sequences of valid 
inferences on a set of predicate logic sentences. For example:  

 



326 Part IV: Programming in Java 

likes(kate, wine).  

likes(george, kate). 

likes(david, kate). 

friends(X, Y) ← likes(X, Z)  ∧ likes(Y, Z). 

We can see intuitively that, because both likes(george, kate) 
and likes(david, kate) are true, it follows from the “friends 
rule” that friends(george, david) is true. A more detailed 
explanation of this reasoning demonstrates the search process that 
constructs these conclusions formally. We begin by unifying the goal 
query, friends(george, david), with the conclusion, or head of 
the friends predicate under the substitutions {george/X, 
david/Y}, as seen in Figure 24.1. 

  

Figure 24.1. The set of variable substitutions, found under unification, by 
which the two friends predicates are identical. 

Figure 24.2 illustrates the result of propagating these substitutions through 
the body of the rule. As the figure suggests, under the inference rule of 
modus ponens, friends(george, david) is true if there exists some 
binding for Z such that likes(george, Z) and likes(david, 
Z) are true. When viewed in terms of search, this leads to the sub-goal of 
proving the rule premise, or that the “tail,” of the rule is true. Figure 24.2 
illustrates this structure of reasoning as a graph. The arc joining the 
branches between the two likes predicates indicates that they are joined 
by a logical and. For the conclusion friends(george, david) to 
be true, we must find a substitution for Z under which both 
likes(george, Z) and likes(david, Z) are true. Figure 24.2 
is an example of a representation called an and/or graph (Luger 2009, 
Section 3.3). And/or graphs represent systems of logic relationships as a 
graph that can be searched to find valid logical inferences. And nodes 
require that all child branches be satisfied (found to be true) in order for 
the entire node to be satisfied. Or nodes only require that one of the child 
branches be satisfied. 
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Figure 24.2. Substitution sets supporting the graph search of the 
friends predicate. 

As we continue building this graph, the next step is to match the sentence 
likes(george, Z) with the different likes predicates. The first 
attempt, matching likes(george, Z) with likes(kate, 
wine) fails to unify. Trying the second predicate, likes(george, 
kate) results in a successful match with the substitution {kate/Z}, as 
in Figure 24.3.  

Figure 24.3 Substitution sets supporting the search to satisfy the 
friends predicate. 

Note that the branches connecting the goal likes(george, Z) to 
the different attempted matches in the graph are not connected. This 
indicates an or node, which can be satisfied by matching any one of the 
branches. 
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The final step is to apply the substitution {kate/Z} to the goal sentence 
likes(david, Z), and to try to match this with the logic 
expressions. Figure 24.4 indicates this step, which completes the search 
and proves the initial friends goal to be true. Note again how the 
algorithm tries the alternative branches of the or nodes of the graph to find 
a solution. 

 
Figure 24.4. A search-based solution of the friends relationship. 

This process of trying alternative branches of a state space can be 
implemented as a backtracking search. If a goal in the search space fails, 
such as trying to match likes(george, Z) and likes(kate, 
wine), the algorithm backtracks and tries the next possible branch of the 
search space. The basic backtracking algorithm is given in (Luger 2009, 
Section 3.2) as:  

If some state S does not offer a solution to a search problem, then open and 
investigate its first child S1 and apply the backtrack procedure recursively to this 
node. If no solution emerges from the subtree rooted by S1 then fail S1 and apply 
backtrack recursively to the second child S2. Continuing on, if no solution 
emerges from any of the children of S, then fail back to S’s parent and apply 
backtrack to S’s first sibling. 

Before implementing our logic-based reasoner as a backtracking search of 
and/or graphs, there is one more concept we need to introduce. That is 
the notion of a proof tree. If we take only the successful branches of our 
search, the result is a tree that illustrates the steps supporting the 
conclusion, as can be seen in Figure 24.5. In implementing a logic-based 
reasoning system, we not only search an and/or graph, but also construct 
the proof tree illustrating a successful search. 
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Figure 24.5. A proof tree showing the successful satisfaction of the 
friends predicate. 

24.3 The Design of a Logic-Based Reasoning System 

 The first step in designing a logic-based reasoning system is to create a 
representation for the logical operators and,  ∧, or, ∨, not, ¬, and 
implication, ←. Figure 24.6 begins this process by adding several classes 
and interfaces to those described in Figure 23.2.  

 

 
Figure 24.6. Classes and interfaces for a logic-based inference system. 
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The basis of this extension is the interface, Goal. Expressions that will 
appear as goals in an and/or graph must implement this interface. These 
include SimpleSentence, and the basic logical operators. We will add 
methods to this interface shortly, but first it is worth looking at a number 
of interesting design decisions supported by this object model.  

The first of these design decisions is to divide PCExpressions into 
two basic groups: Unifiable, which defines the basic unification 
algorithm, and Goal which defines nodes of our search space. It is worth 
noting that, when we were developing this algorithm, our initial approach 
did not make this distinction, but included both basic unification and the 
search of logical operators in the unify method, which was specified in 
the top-level interface, PCExpression.  

We chose to re-factor the code and divide this functionality among the 
two interfaces because 1) the initial approach complicated the unify 
method considerably, and 2) since the objects Constant and 
Variable did not appear in proof trees, we had to treat these as 
exceptions, complicating both search and construction of proof trees. 
Note also that SimpleSentence implements both interfaces. This is 
an example of how Java uses interfaces to achieve a form of multiple 
inheritance. 

Another important aspect of this design is the introduction of the 
AbstractOperator class. As indicated in the model of Figure 24.6, 
an AbstractOperator is the parent class of all logical operators. This 
abstract class defines the basic handling of the arguments of operators 
through the methods firstOperand, tailOperands, and 
isEmpty. These methods will enable a recursive search to find solutions 
to the different operands. 

To complete our logical representation language, we need to define Horn 
Clause rules. Rules do not correspond directly to nodes in an and/or 
graph; rather, they define relationships between nodes. Consequently, the 
Rule class will be a direct descendant of PCExpression, as 
shown in Figure 24.7, where a rule is a Horn Clause, taking a 
SimpleSentence as its conclusion, or head, and a Goal as its premise, 
or tail.  

This completes the classes defining our logic-based language. The next 
section gives their implementation, which is fairly straightforward, and 
Section 24.5 adds new classes for searching the and/or graph defined by 
inferences on these expressions. This decision to define separate classes 
for the representation and search reflects common AI programming 
practice. 

24.4 Implementing Complex Logic Expressions 

 Implementing complex expressions starts with the Goal interface. 
Although Section 24.5 adds a method to this definition, for now, it is a 
methodless interface: 

public interface Goal extends PCExpression {} 
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Figure 24.7. A Horn clause Rule representation as an instance of 

PCExpression. 

Later, we modify SimpleSentence to implement this interface, but 
first, we define a new class, called AbstractOperator, that defines 
the basic methods for accessing the arguments of n-ary operators. In 
keeping with common Java practice, we implement several patterns for 
accessing operators, including retrieval of operands by number using the 
methods operandCount() and getOperand(int i). Since we 
also want to support recursive algorithms for manipulating operands, we 
implement a head/tail approach similar to the car/cdr pattern widely 
used in Lisp. We do this through the methods firstOperand(), 
getOperatorTail(), and isEmpty(). We also define the 
replaceVariables() method required of all PCExpressions, 
taking advantage of the class’ general representation of operands. 

Implementation of these methods is straightforward, and we do not 
discuss it other than to present the code: 

public abstract class AbstractOperator  

  implements Goal, Cloneable  

{ 

 protected ArrayList<Goal> operands; 

 public AbstractOperator(Goal... operands) 

 { 

  Goal[] operandArray = operands; 

  this.operands = new ArrayList<Goal>(); 

  for(int i = 0; i < operandArray.length;i++) 

  { 

   this.operands.add(operandArray[i]); 

  } 

 }  
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 public AbstractOperator(ArrayList<Goal>  

   operands) 

 { 

  this.operands = operands; 

 } 

  public void setOperands(ArrayList<Goal>    

   operands) 

 { 

   this.operands = operands; 

  } 

 public int operandCount() 

 { 

  return operands.size(); 

 } 

 public Goal getOperand(int i) 

 { 

  return operands.get(i); 

 } 

 public Goal getFirstOperand() 

 { 

  return operands.get(0); 

 } 

 public AbstractOperator getOperatorTail()  

   throws CloneNotSupportedException  

 { 

  ArrayList<Goal> tail = new  

   ArrayList<Goal>(operands); 

   tail.remove(0); 

   AbstractOperator tailOperator =   
   (AbstractOperator)this.clone(); 

   tailOperator.setOperands(tail); 

   return tailOperator; 

  } 

 public boolean isEmpty() 

 { 

     return operands.isEmpty(); 

 } 

  public PCExpression  

   replaceVariables(SubstitutionSet s) 

   throws CloneNotSupportedException  

 



 Chapter 24 A Logic-Based Reasoning System 333 

 

 { 

  ArrayList<Goal> newOperands =  

   new ArrayList<Goal>(); 

  for(int i = 0; i < operandCount(); i++)  
   newOperands.add((Goal)  

    getOperand(i). 

     replaceVariables(s)); 

  AbstractOperator copy =  

   (AbstractOperator) this.clone(); 

   copy.setOperands(newOperands); 

   return copy; 

  }   

} 

The And operator is a simple extension to this class. At this time, our 
implementation includes just the toString() method.  Note use of the 
accessors defined in AbstractOperator(): 

public class And extends AbstractOperator  

{ 

 public And(Goal... operands) 

 { 

  super(operands); 

 } 

 public And(ArrayList<Goal> operands) 

 { 

  super(operands); 

 } 

  public String toString() 

 { 

  String result = new String("(AND "); 

  for(int i = 0; i < operandCount(); i++) 

   result = result +  
    getOperand(i).toString();   

          return result; 

 } 

} 

We leave implementation of Or and Not as exercises. 

Finally, we implement Rule as a Horn Clause, having a 
SimpleSentence as its conclusion, or head, and any Goal as its 
premise, or tail. At this time, we provide another basic implementation, 
consisting of accessor methods and the replaceVariables() 
method required for all classes implementing PCExpression. Also, we 
allow Rule to have a head only (i.e., body = null), as follows from the 
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definition of Horn Clauses. These rules correspond to simple assertions, 
such as likes(george, kate). 

public class Rule implements PCExpression  

{ 

 private SimpleSentence head; 

 private Goal body; 

 public Rule(SimpleSentence head)  

 { 

  this(head, null);  

 } 

 public Rule(SimpleSentence head, Goal body)  

 { 

        this.head = head; 

        this.body = body; 

    } 

   public SimpleSentence getHead() 

 { 

      return head; 

    } 

   public Goal getBody() 

 { 

      return body; 

    } 

 public PCExpression  

   replaceVariables(SubstitutionSet s) 

   throws CloneNotSupportedException  

 { 

  ArrayList<Goal> newOperands =  

   new ArrayList<Goal>(); 

    for(int i = 0; i < operandCount(); i++) 

  newOperands.add((Goal)getOperand(i). 

    replaceVariables(s)); 

  AbstractOperator copy =  

   (AbstractOperator)this.clone(); 

   copy.setOperands(newOperands); 

  return copy; 

  }   

    public String toString()  

 { 

     if (body == null) 

       return head.toString(); 
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     return head + " :- " + body; 

    } 

} 

Up to this point, the implementation of complex expressions has been 
straightforward, focusing on operators for manipulating their component 
structures. This is because their more complex semantics is a consequence 
of how they are interpreted in problem solvers. The next section discusses 
the design of the logic-based reasoning engine that supports this 
interpretation. 

24.5 Logic-Based Reasoning as And/Or Graph Search 

 The basis of our implementation of and/or graph search is a set of classes 
for defining nodes of the graph. These will correspond to simple 
sentences, and the operators And, Or, and Not. In this section we define 
nodes for And with simple sentences, leaving Or and Not as exercises. 
Our approach is to construct an and/or graph as we search. When the 
search terminates in success, this graph will be the proof tree for that 
solution. If additional solutions are desired, a call to a 
nextSolution() method causes the most recent subgoal to fail, 
resuming the search at that point. If there are no further solutions from 
that subgoal, the search will continue to “fail back” to a parent goal, and 
continue searching. The implementation will repeat this backtracking 
search until the space is exhausted.  

Figure 24.8 illustrates this search. At the top of the figure we begin with an 
initial and/or graph consisting only of the initial goal (e.g., 
friends(george, X)). A call to the method nextSolution() 
starts a search of the graph and constructs the proof tree, stopping the 
algorithm. In addition to constructing the proof tree, each node stores its 
state at the time the search finished, so a second call to 
nextSolution() causes the search to resume where it left off. 

This technique is made possible by a programming pattern known as 
continuations. Continuations have had multiple uses but the main idea is that 
they allow the programmer to save the program execution at any instant 
(state) in time so that it can be re-started from that point sometime in the 
future.  In languages that support continuations directly, this is usually 
implemented by saving the program stack and program counter at the 
point where the program is frozen. Java does not support this pattern 
directly, so we will implement a simplified form of the continuation 
pattern using object member variables to save a reference to the current 
goal, the current rule used to solve it, and the current set of variable 
bindings in the tree search. Figure 24.9 shows the classes we introduce to 
implement this approach. 

AbstractSolutionNode defines the basic functionality for every 
node of the graph, including the abstract method nextSolution(). 
AbstractSolutionNode and its descendants will implement the 
ability to search the and/or graph, to save the state of the search, and to 
resume on subsequent calls to nextSolution().  
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The class RuleSet maintains the logic base, a list of rules. The intention 
is that all nodes will use the same instance of RuleSet, with each 
instance of AbstractSolutionNode maintaining a reference to a 
particular rule in the set to enable the continuation pattern.  

Figure 24.8. An example search space and construction of the proof tree.  

 
Figure 24.9.  The class structure for implementing continuations. 

The descendants of AbstractSolutionNode maintain references to 
their children. SimpleSentenceSolutionNode represents a simple 
sentence as a goal, and maintains a reference to its child: the head of a 
rule. AndSolutionNode represents an and node, and keeps a 
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reference to the first branch of the and node (the relationship labeled 
headSolutionNode) and the subsequent branches in the and node 
(the relationship labeled tailSolutionNode).  

We begin implementation with the RuleSet class: 
public class RuleSet  

{ 

 private Rule[] rules; 

 public RuleSet(Rule... rules)  

 { 

  this.rules = rules; 

 } 

 public Rule getRuleStandardizedApart(int i)  

 { 

  Rule rule =  

   (Rule)rules[i]. 

    standardizeVariablesApart( 

     new Hashtable<Variable,  

      Variable>());        

  return rule; 

   } 

   public Rule getRule(int i)  

 { 

  return rules[i];  

 } 

   public int getRuleCount()  

 { 

  return rules.length; 

   } 

} 

This definition is simple: it maintains an array of rules and allows them to 
be retrieved by number. The only unusual element is the method 
getRuleStandardizedApart(int i). This is necessary because 
the scope of logical variables is the single predicate sentence containing it 
in a single reasoning step. If we use the same rule again in the search, 
which is fairly common, we will need to assign new bindings to the 
variables. A simple way to insure this is to replace the variables in the rule 
with new copies having the same name. This operation, called 
“standardizing variables apart” must be defined for all expressions in the 
rule set. To support this, we will add a new method signature to the 
interface PCExpression. This interface now becomes: 

public interface PCExpression  

{ 

 public PCExpression 
           standardizeVariablesApart(  
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   Hashtable<Variable, Variable> newVars); 

 public PCExpression  
   replaceVariables(SubstitutionSet s); 

} 

The intention here is that the method will be recursive, with each type of 
PCExpression giving it its own appropriate definition. In the method 
signature, the hash table of pairs of variables keeps track of the 
substitutions made so far, since a variable may occur multiple times in an 
expression, and will need to use the same replacement. Defining this 
requires changes to the following classes.  AbstractOperator will define 
it for all n-ary operators: 

public abstract class AbstractOperator implements 
Goal, Cloneable  

{  

 // variables and methods as already defined 

   public PCExpression  

   standardizeVariablesApart( 
    Hashtable<Variable,  
                 Variable>wVars) 

    throws CloneNotSupportedException  

 { 

  ArrayList<Goal> newOperands =  

   new ArrayList<Goal>(); 

  for(int i = 0; i < operandCount(); i++)  

   newOperands.add((Goal)getOperand(i). 

   standardizeVariablesApart(newVars)); 

  AbstractOperator copy =  

   (AbstractOperator) this.clone(); 

  copy.setOperands(newOperands); 

  return copy; 

  } 

} 

We will also define the method for existing classes SimpleSentence, 
Constant, and Variable. The definition for Constant is straightforward: 
each constant returns itself. 

 public class Constant implements Unifiable  

{ 

 // variables and methods as previously defined 

  public PCExpression  

  standardizeVariablesApart( 

   Hashtable<Variable, Variable> newVars) 

 { 

   return this; 

   } 

} 
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The definition for Variable is also straightforward, and makes use of 
the copy constructor defined earlier. 

 public class Variable implements Unifiable  

{ 

        // variables and methods already defined. 

  public PCExpression standardizeVariablesApart( 

   Hashtable<Variable, Variable>  

    newVars)  

 { 

   Variable newVar = newVars.get(this); 

           // Check if the expression already has  

                      // a substitute variable. 

   if(newVar == null)    // if not create one. 

  {  

   newVar = new Variable(this); 

    newVars.put(this, newVar); 

   } 

   return newVar; 

  } 

SimpleSentence defines the method recursively: 

public class SimpleSentence  

  implements Unifiable, Goal, Cloneable  

{ 

        // variables and methods already defined. 

  public PCExpression  

   standardizeVariablesApart( 

    Hashtable<Variable, Variable>  

     newVars) 

   throws CloneNotSupportedException  

 { 

  Unifiable[] newTerms =  

   new Unifiable[terms.length]; 

              //create an array for new terms. 

   for(int i = 0; i < length(); i++){ 

    newTerms[i] =  

    (Unifiable)terms[i]. 

     standardizeVariablesApart( 

      newVars); 

            // Standardize apart each term.  

         // Only variables will be affected. 

   } 
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    SimpleSentence newSentence =  
     (SimpleSentence) clone(); 

   newSentence.setTerms(newTerms); 

   return newSentence; 

  }  

Once RuleSet has been defined, the implementation of 
AbstractSolutionNode is, again, fairly straightforward.  

public abstract class AbstractSolutionNode  

{ 
 private RuleSet rules;    
 private Rule currentRule = null; 
  private Goal goal= null; 
 private SubstitutionSet parentSolution;  
 private int ruleNumber = 0; 
 public AbstractSolutionNode(Goal goal,  
   RuleSet rules, 
   SubstitutionSet parentSolution)  
 { 
  this.rules = rules; 

  this.parentSolution = parentSolution; 

    this.goal = goal; 

 } 

 public abstract SubstitutionSet nextSolution()  

   throws CloneNotSupportedException; 

 protected void reset(SubstitutionSet    
             newParentSolution) 

 { 

  parentSolution = newParentSolution; 

  ruleNumber = 0; 

 } 

 public Rule nextRule() throws  

   CloneNotSupportedException 

 {    

  if(hasNextRule()) 

    currentRule =  

    rules.getRuleStandardizedApart( 
       ruleNumber++); 

   else 

    currentRule = null; 

   return currentRule; } 

 protected boolean hasNextRule() 

    { 

  return ruleNumber < rules.getRuleCount(); 

 } 
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 protected SubstitutionSet getParentSolution() 

 { 
  return parentSolution; 
 } 

 protected RuleSet getRuleSet() 

 { 
  return rules; 
 } 

 public Rule getCurrentRule() 

 { 

   return currentRule; 

  } 

   public Goal getGoal() 

 { 

   return goal; 

  }  

} 

The member variable rules holds the rule set shared by all nodes in the 
graph. RuleNumber indicates the rule currently being used to solve the 
goal. ParentSolution is the substitution set as it was when the node 
was created; saving it allows backtracking on resuming the continuation of 
the search. These three member variables allow the node to resume search 
where it left off, as required for the continuation pattern.  

The variable goal stores the goal being solved at the node, and 
currentRule is the rule that defined the current state of the node. 
Reset() allows us to set a solution node to a state equivalent to a newly 
created node. NextRule() returns the next rule in the set, with 
variables standardized apart. The definition also includes the signature for 
the nextSolution() method. The remaining methods are simple 
accessors. 

The next class we define is SimpleSentenceSolutionNode, an 
extension of AbstractSolutionNode for simple sentences. 

public class SimpleSentenceSolutionNode extends  
    AbstractSolutionNode  

{ 

 private SimpleSentence goal; 

 private AbstractSolutionNode child = null; 

 public SimpleSentenceSolutionNode( 
    SimpleSentence goal,  
    RuleSet rules,  
    SubstitutionSet parentSolution) 

   throws CloneNotSupportedException  

 { 

  super(goal, rules, parentSolution); 

 } 
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 public SubstitutionSet nextSolution()  

 { 

  SubstitutionSet solution; 

  if(child != null) 

  { 

   solution = child.nextSolution(); 

   if (solution != null) 

    return solution; 

  } 

   child = null; 

  Rule rule; 

  while(hasNextRule() == true) 

  { 

   rule = nextRule(); 

   SimpleSentence head = rule.getHead();  

   solution = goal.unify(head,  
    getParentSolution()); 

   if(solution != null) 

   { 

    Goal tail = rule.getBody(); 

    if(tail == null) 

     return solution; 

    child = tail.getSolver 
                          (getRuleSet(),solution); 

    SubstitutionSet childSolution =  
       child.nextSolution(); 

    if(childSolution != null)  

     return childSolution; 

   } 

  } 

  return null; 

 } 

   public AbstractSolutionNode getChild()  

 { 

   return child; 

  } 

} 

This class has one member variable: child is the next node, or subgoal 
in the state space. The method nextSolution() defines the use of 
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these variables, and is one of the more complex methods in the 
implementation, and we will list the steps in detail.  

1. The first step in nextSolution() is to test if child is 
null. If it is not, which could be the case if we are resuming 
a previous search, we call nextSolution() on the child 
node to see if there are any more solutions in that branch of 
the space. If this returns a non-null result, the method returns 
this solution.  

2. If the child node returns no solution, the method sets child 
to null, and resumes trying rules in a while-loop. The loop 
gets each rule from the RuleSet in turn, and attempts to 
unify the goal with the rule head.  

3. If the goal matches a rule head, the method then checks if the 
rule has a tail, or premise. If there is no tail, then this match 
represents a solution to the goal and returns that substitution 
set.  

4. If the rule does have a tail, the method calls getSolver() 
on the rule tail to get a new child node. This is a new method, 
which we will discuss shortly. 

5. Finally, the method calls nextSolution() on the new 
child node, returning this solution if there is one, and 
continuing the search otherwise. 

6. If the while-loop exhausts the rule set, the node returns null, 
indicating there are no further solutions. 

We have not discussed the method getSolver()mentioned in step 
#4. This is a new method for all classes implementing the Goal interface 
that returns the type of solution node appropriate to that goal. By letting 
each goal determine the proper type of solver for it, we can implement 
nextSolution() in general terms. The revised definition of Goal: 

public interface Goal extends PCExpression  

  throws CloneNotSupportedException  

{ 

 public AbstractSolutionNode getSolver( 
      RuleSet rules,  
      SubstitutionSet parentSolution); 

} 

 

To complete the search implementation, we define the class, 
AndSolutionNode. Our approach to this implementation is to define 
a new And node for each argument to the And operator and the 
remaining operators. Figure 24.10 illustrates this approach. At the top of 
the figure is a portion of an And/Or graph for the goal p ∧ q ∧ r ∧ s, 
indicating that the top-level goal will be satisfied by a set of variable 
substitutions that understands all four of its child goals.  
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Figure 24.10 A conjunctive goal (top) and the search tree used for its 

solution. 

The bottom of Figure 24.10 indicates the approach we will take. Instead of 
allowing multiple children at an and node, we will make each node binary, 
consisting of the and of the solution for the first operand (the head) and 
the subsequent operands (the tail). This supports a recursive algorithm 
that simplifies our code. We leave it to the student to demonstrate 
(preferably through a formal proof) that the two approaches are 
equivalent. An additional exercise to implement and nodes by using an 
iterator across a list of child nodes. 

AndSolutionNode follows the structure of Figure 24.10: 
public class AndSolutionNode extends 

  AbstractSolutionNode  

{ 

  private AbstractSolutionNode  

  headSolutionNode = null;   
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 private AbstractSolutionNode  
  tailSolutionNode = null;     

 private AbstractOperator operatorTail = null; 

   public AndSolutionNode(And goal,  
    RuleSet rules,  
    SubstitutionSet parentSolution) 
    throws CloneNotSupportedException  
 { 
   super(goal, rules, parentSolution); 

   headSolutionNode =  
       goal.getFirstOperand(). 

  getSolver(rules, parentSolution); 

   operatorTail = goal.getOperatorTail(); 
  } 

   protected AbstractSolutionNode  

  getHeadSolutionNode() 

 { 

  return headSolutionNode; 

  } 

   protected AbstractSolutionNode  

  getTailSolutionNode() 

 { 

   return tailSolutionNode; 

  } 

   public SubstitutionSet nextSolution() 

    throws CloneNotSupportedException  

 { 

   SubstitutionSet solution; 

   if(tailSolutionNode != null) 

        { 

   solution =  
    tailSolutionNode.nextSolution(); 

    if(solution != null) return solution; 

   } 

    while(solution =  
        headSolutionNode.nextSolution()) 
                     != null) 

  { 

     if(operatorTail.isEmpty()) 

     return solution; 

    else  

   { 

     tailSolutionNode =  
         operatorTail.getSolver( 
         getRuleSet(), solution); 
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     SubstitutionSet tailSolution =  
          tailSolutionNode. 
       nextSolution();  

    if(tailSolution != null) 

      return tailSolution; 

    } 

   } 

   return null; 

  } 

 } 

The constructor creates a solution node, headSolutionNode, for the 
first argument of the And operator, and also sets the member variable, 
operatorTail, for the rest of the arguments if they exist. Note that it 
does not create a solution node for the tail at this time. This is an 
efficiency concern: if there are no solutions to the head subgoal, the entire 
and operator will fail, and there is no need to try the rest of the operators. 

As with SimpleSolutionNode, the nextSolution() method 
implements the search and the supporting continuation pattern. It begins 
by testing if tailSolutionNode is non-null. This is true only if there are 
remaining arguments (operatorTail != null), and we have found at 
least one solution to the head goal. In this case, the continuation must first 
check to see if there are additional solutions to the tail goal.  

When this fails, the algorithm enters a loop of testing for further solutions 
to the head goal. When it finds a new solution to the head, it checks if 
there is a tail goal; if not, it returns the solution. If there is a tail goal, it will 
acquire the child node, a subclass of AbstractSolutionNode using the 
getSolver method, and then tries for a solution to the tail goal. 

This completes the implementation of the search framework for the And 
operator. We leave implementation of Or and Not to the reader. 

24.6 Testing the Reasoning System 

 Below is a simple Tester class for the reasoning system. It uses a 
recursive rule for reasoning about ancestor relationships. This is a simple 
test harness and is not suitable for end users. Finishing the reasoner would 
involve allowing the representation of rules in a more friendly syntax, such 
as Prolog, and an interactive query engine. We leave this as an exercise. 
We also encourage the reader to modify this simple Tester to further 
explore the code.  

public class Tester  

{ 

 public static void main(String[] args)  

 {                          //Set up the knowledge base. 

  Constant parent = new Constant("parent"),  

      bill = new Constant("Bill"),  
   audrey = new Constant("Audrey"), 
   maria = new Constant("Maria"), 
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   tony = new Constant("Tony"), 

   charles = new Constant("Charles"), 

   ancestor = new Constant("ancestor"); 

  Variable X = new Variable("X"), 

    Y = new Variable("Y"), 

    Z = new Variable("Z"); 

  RuleSet rules = new RuleSet(     

   new Rule(new SimpleSentence(parent,  
        bill, audrey)), 

   new Rule(new SimpleSentence(parent,  
        maria, bill)), 

   new Rule(new SimpleSentence(parent,  
        tony, maria)), 

   new Rule(new SimpleSentence(parent,  
        charles, tony)), 

   new Rule(new SimpleSentence(ancestor,  
        X, Y), 

   new And(new SimpleSentence(parent,  
        X, Y))), 

   new Rule(new SimpleSentence(ancestor,  
        X, Y),  

   new And(new SimpleSentence(parent,  
        X, Z), 

   new SimpleSentence(ancestor, Z, Y)))); 

     // define goal and root of search space. 

  SimpleSentence goal =  
           new SimpleSentence(ancestor,  
                     charles, Y); 

  AbstractSolutionNode root =  
               goal.getSolver(rules,  
       new SubstitutionSet()); 

  SubstitutionSet solution;      

                       // print out results. 

  System.out.println("Goal = " + goal);    

  System.out.println("Solutions:"); 

   try  

  { 

    while((solution = root.nextSolution())  

     != null) 

   {    

    System.out.println("     " + goal. 
      replaceVariables( 
      solution)); 

   } 

   } 

   catch (CloneNotSupportedException e)  
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  {    
   System.out.println( 
       "CloneNotSupportedException:" + e); 

  } 
 } 
} 

24.7 Design Discussion 

 In closing out this chapter, we would like to look at two major design 
decisions. The first is our separation of representation and search through 
the introduction of AbstractSolutionNode and its descendants. 
The second is the importance of static structure to the design. 

Separating 
Representation 

and Search 

The separation of representation and search is a common theme in AI 
programming. In Chapter 22, for example, our implementation of simple 
search engines relied upon this separation for generality. In the reasoning 
engine, we bring the relationship between representation and search into 
sharper focus. Here, the search engine serves to define the semantics of 
our logical representation by implementing a form of logical inference. As 
we mentioned before, our approach builds upon the mathematics of the 
representation language – in this case, theories of logic inference – to 
insure the quality of our representation. 

One detail of our approach bears further discussion. That is the use of the 
method, getSolver(RuleSet rules, SubstitutionSet 
parentSolution), which was defined in the Goal interface. This 
method simplifies the handling of the search space by letting search 
algorithms treat them independently of their type (simple sentence, node, 
etc). Instead, it lets us treat nodes in terms of the general methods defined 
by AbstractSolutionNode, and to rely upon each goal to return 
the proper type of solution node. This approach is beneficial, but as is 
typical of object-oriented design, there are other ways to implement it. 

One of these alternatives is through a factory pattern. This would replace 
the getSolver() method of Goal with a separate class that creates 
instances of the needed node. For example: 

Class SolutionNodeFactory  
{ 
 public static AbstractSolutionNode  

  getSolver(Goal goal,  
    RuleSet rules,  
    SubstitutionSet parentSolution)  

 { 
  if (goal instanceof SimpleSentence) 

   return new SimpleSentenceSolutionNode( 
     goal, rules, parentSolution); 

      if (goal instanceof And)  

   return new AndSolutionNode(goal, rules, 
      parentSolution); 
 } 
} 
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There are several interesting trade-offs between the approaches. Use of 
the Factory sharpens the separation of representation and search. It 
even allows us to reuse the representation in contexts that do not involve 
reasoning without the difficulty of deciding how to handle the 
getSolver method required by the parent interface. On the other 
hand, the approach we did use allows us to get the desired solver without 
using instanceof to test the type of goal objects explicitly. Because the 
instanceof operator is computationally expensive, many programmers 
consider it good style to avoid it. Also, when adding a new operator, such 
as Or, we only have to change the operator’s class definition, rather than 
adding the new class and modifying the Factory object. Both 
approaches, however, are good Java style. As with all design decisions, we 
encourage the reader to evaluate these and other approaches and make up 
their own mind. 

The 
Importance of 

Static Structure 

A more important design decision concerns the static structure of the 
implementation. By static structure, we mean the organization of classes in 
a program. We call it static because this structure is not changed by 
program execution. As shown in Figures 24.6, 24.7, and 24.9, our 
approach has a fairly complex static structure. Indeed, in developing the 
reasoner, we experimented with several different approaches (this is, we 
feel, another good design practice), and many of these had considerably 
fewer classes and simpler static structures. We chose this approach 
because it is usually better to represent as much of the program’s semantic 
structure as is feasible in the class structure of the code. There are several 
reasons for this: 

1. It makes the code easier to understand. Although our static 
structure is complex, it is still much simpler than the dynamic 
behavior of even a moderately complex program. Because it is 
static, we can make good use of modeling techniques and tools 
to understand the program, rather than relying on dynamic 
tracing to see what is going on in program executions. 

2. It simplifies methods. A well-designed static structure, 
although it may be complex, does not necessarily add 
complexity to the code. Rather, it moves complexity from 
methods to the class structure. Instead of a few classes with 
large complex methods, we tend to have more, simpler 
methods. If we look at the implementation of our logic-based 
reasoner, the majority of the methods were surprisingly simple: 
mostly setting or retrieving values from a data structure. This 
makes methods easier to write correctly, and easier to debug. 

3. It makes it easier to modify the code. As any experienced 
programmer has learned, the lifecycle of useful code inevitably 
involves enhancements. There is a tendency for these 
enhancements to complicate the code, leading to increased 
problems with bugs as the software ages. This phenomenon 
has been called software entropy. Because it breaks the 
program functionality down into many smaller methods 
spread among many classes, good static structure can simplify 
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code maintenance by reducing the need to make complex 
changes to existing methods. 

This chapter completes the basic implementation of a logic-based 
reasoner, except for certain extensions including adding the operators for 
or and not. We leave these as an exercise. The next chapter will add a 
number of enhancements to the basic reasoner, such as asking users for 
input during the reasoning process, or replacing true/false values with 
quantitative measures of uncertainty. As we develop these enhancements, 
keep in mind how class structure supports these extensions, as well as the 
implementation patterns we use to construct them. 

 Exercises 

 1. Write a method of AbstractSolutionNode to print out a proof 
tree in a readable format. A common approach to this is to indent each 
node’s description c * level, where level is its depth in the tree, and c is the 
number of spaces each level is indented. 

2. Add classes for the logical operators Or and Not. Try following the 
pattern of the chapter’s implementation of And, but do so critically. If you 
find an alternative approach you prefer, feel free to explore it, rewriting 
Or and Not as well. If you do decide on a different approach, explain 
why. 

3. Extend the “user-friendly” input language from exercise 8 of chapter 22 
to include And, ∧, Or, ∨, Not,¬, and Rule, ←.  

4. Write a Prolog-style interactive front end to the logical reasoner that will 
read in a logical knowledge-base from a file using the language of exercise 
2, and then enter a loop where users enter goals in the same language, 
printing out the results, and then prompting for another goal. 

5. Implement a factory pattern for generating solutionNodes, and 
compare it to the approach taken in the chapter. A factory would be a 
class, named solutionNodeFactory with a methods that would take 
any needed variables and return an instance of the class 
solutionNodes.  

6. Give a logical proof that the two approaches to representing And nodes 
in Figure 24.10 are equivalent.  

7. Modify the nextSolution() method in AndSolutionNode to 
replace the recursive implementation with one that iterates across all the 
operators of an And operator. Discuss the trade-offs between efficiency, 
understandability, and maintainability in the two approaches. 

 

 


